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Abstract—This paper addresses the problem of tracking multiple moving sources using 
binaural input. We observe that binaural cues are strongly correlated with source locations 
in time-frequency regions dominated by only one source. Based on this observation, we 
propose a novel tracking algorithm that integrates probabilities across reliable frequency 
channels in order to produce a likelihood function in the target space, which describes the 
azimuths of active sources at a particular time frame. Finally, a hidden Markov model 
(HMM) is employed to form continuous tracks and automatically detect the number of 
active sources across time. Experimental results are presented for two- and three-source 
scenarios. A comparison shows that our HMM model outperforms a Kalman filter based 
approach in tracking active sources across time. Our study represents a first step in 
addressing auditory scene analysis with moving sound sources. 
 

Index Terms—binaural processing, hidden Markov model (HMM), moving source tracking, 
multi-source tracking 
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I.   INTRODUCTION 
 
The problem of tracking multiple moving targets arises in many domains including surveillance, 
navigation and speech processing. In this study we are interested in localizing and tracking 
multiple acoustic sources that may move, such as concurrent speakers at a cocktail party. A 
solution to this problem is needed in many speech processing applications such as meeting 
segmentation, hands-free speech acquisition and hearing prosthesis [1] [2]. 

Numerous multitarget tracking algorithms have been developed, mostly for radar sensors (for 
a review see [3]). There are two main approaches to target tracking that utilize Bayesian 
inference: Multiple hypothesis tracking (MHT) and Bayesian filtering. The MHT attempts to 
optimally associate the noisy measurements over time to form multiple tracks. For a particular 
hypothesis, a Kalman filter is associated with each track and a maximum a posteriori (MAP) 
cost is computed using the Kalman filter innovation sequence and the a priori track set 
probability. Finally, the estimated tracks are obtained by comparing all the hypothesized track 
sets using the MAP cost. Bayesian filtering, on the other hand, aims at the conditional mean 
estimation of the location state space. The conditional probability is recursively estimated by 
combining a model for the source motions and a likelihood for the state space given a set of 
noisy measurements. The Bayesian tracker has a closed-form solution only for a linear process 
with Gaussian noise which is equivalent to the Kalman filter in this case. In general, optimum 
MHT and Bayesian solutions require an exponential number of evaluations and therefore are 
deemed impractical [4]. Hypothesis pruning and merging techniques have been proposed to 
reduce this computational burden, including measurement gating [5], probabilistic data 
association [6], and Viterbi based algorithms [7]. An approximation to Bayesian filtering for 
nonlinear functions, non-Gaussian noises, and multi-modal distributions is provided using 
sequential Monte-Carlo methods, also known as particle filtering [8] [9]. When the number of 
active sources rapidly varies the above algorithms require complex birth/death rules to initiate 
and terminate individual tracks. 

HMM has also been proposed for target tracking in sonar networks by employing the 
Markovian modeling of source dynamics in a discretized target space [10]. It is important to note 
that this framework can handle multi-modal likelihood distributions. Due to discrete Markov 
modeling, Viterbi decoding can be used to efficiently search for the most likely state sequences. 
The number of targets is, however, decided in this algorithm in a postprocessing step based on 
detection of local maxima in the likelihood distribution. 

Several of the above techniques have been adapted and applied to the problem of speaker 
tracking using microphone arrays. To estimate the locations of active sources in each time frame, 
these algorithms typically employ variants of the well-known generalized cross-correlation 
function [11] or subspace-based methods [12]. The particle filtering theory, for example, has 
been extended to the tracking of one moving speaker in a reverberant environment [13] [14].  For 
the tracking of multiple speakers, algorithms have been proposed that combine Kalman filtering 
with probabilistic data association techniques [15] [16]. These multi-source tracking algorithms 
have been shown to provide good localization results using an array of microphones. However, 
when restricting the size of the array to only two sensors, as in the case of human audition, the 
multi-source tracking problem becomes more challenging and little has been attained in this 
respect. As a solution, visual and auditory information are jointly used for the task, where 
audition helps mainly in resolving ambiguities during occlusions [17].  
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Location has been shown to be an effective cue for computational systems that attempt to 
separate individual talkers in noisy environments using only two microphones [18] [19]. The 
binaural cues of interaural time differences (ITD) and interaural intensity differences (IID) are 
strongly correlated with the source locations in time-frequency (T-F) regions dominated by only 
one source. Hence, with accurate locations, the binaural cues can be used to segregate the 
original signals. However, in a realistic environment source motion and head movement have to 
be considered and location estimates may have to be updated every frame of data.  

In this paper, we study the tracking of multiple speakers based on the binaural response of a 
KEMAR dummy head that accurately simulates the filtering process of the head, torso and 
external ear [20]. We propose a novel HMM framework where the change in the number of 
active tracks is modeled probabilistically. Specifically, the target space is modeled as a set of 
subspaces with jump probabilities between them. Each subspace models the tracking of a subset 
of possible active sources. Hence, unlike previous methods, the detection of tracks in the HMM 
is fully automatic and does not require heuristic rules for track initialization and termination. Our 
approach extends an HMM-based model for multi-pitch tracking proposed by Wu et al. [21] 
[22]. Due to the sparsity of speech signal distribution in a two-dimensional (2-D) T-F 
representation [23], while some T-F units in a mixture signal respond to overlapping multiple 
sources, others are dominated by only one source and thus provide reliable information for 
localization. In this paper, the T-F decomposition is obtained at the output of an auditory 
filterbank; the output of each filter channel is divided in 20-ms sections with 10-ms overlap that 
correspond to T-F units. Because the binaural cues are strongly correlated with source locations 
in the regions dominated by a single source, peaky statistical distributions characterize the 
observations in the reliable frequency channels. Hence, we propose to use a channel selection 
mechanism to determine the reliable channels followed by a statistical integration of these 
channels in order to obtain the likelihood function for different target subspaces.  

The rest of the paper is organized as follows: the next section gives an overview of the 
system. Section III describes auditory motion modeling. Section IV briefly describes the auditory 
periphery model and binaural processing. Section V contains details of the proposed statistical 
model. In this paper we report experimental results for the tracking of two and three 
simultaneous speakers. Section VI gives the simulation results and a comparison with a Kalman 
filter approach. The last section concludes the paper. 

 

II.   MODEL ARCHITECTURE 
 

Our multi-source tracking system consists of the following four stages: 1) a model of the 
auditory periphery and binaural cue estimation; 2) a channel selection mechanism that identifies 
reliable frequency channels in each time frame; 3) a multichannel statistical integration method 
that produces the likelihood function for target subspaces; and 4) a continuous HMM model for 
multi-source tracking. Fig. 1 illustrates the model architecture for the case of two moving 
sources. 

The input to our model is a binaural response of a KEMAR dummy head to an acoustic scene 
with multiple moving sources. We utilize here the catalog of head related transfer functions 
(HRTF) measured by Gardner and Martin [24] for anechoic conditions at fixed source locations 
on a sphere around the KEMAR. Interpolation is then used to obtain HRTF responses for 
arbitrary positions on the sphere. HRTFs introduce a natural combination of ITD and IID into the  
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Fig. 1. A schematic diagram of the proposed multi-source tracking system. 

 
signals which is extracted in subsequent stages of our model. Here we restrict the motion of 
individual sources to the half horizontal plane with azimuth in the range [-90○, 90○]. The system 
is, however, extensible to cover the entire azimuth range since ITD and IID used jointly can 
potentially differentiate between the front and the back. Hence, for each moving source left and 
right ear signals are obtained by filtering with time-varying HRTFs that correspond to a source 
trajectory on the frontal semicircle. The responses to multiple sources are added at the two ears 
and form the binaural input to our system.  

In the first stage, the resulting left and right ear mixtures are analyzed using an auditory 
periphery model. Then, for each frequency channel, normalized cross-correlation functions 
between the two ear signals are computed in consecutive time frames. The time lag of a peak in 
the cross-correlation function is a candidate for ITD estimation. At high frequencies multiple 
peaks are present and this creates ambiguity in localization. We resolve this ambiguity by using 
IID information.  

Channel selection comprises the second stage of our system. This stage attempts to select 
reliable channels defined as those dominated primarily by only one source while removing the 
more corrupted ones. Here, we use the height of the peak in the cross-correlation function as a 
measure of channel reliability. The third stage is the multichannel integration of location 
information. The conventional approach is to summate the cross-correlation functions across all 
frequency channels [18]. A peak in the summary cross-correlation suggests an active source 
while the height of the peak indicates its likelihood. This approach, however, under-utilizes the 
location information in individual frequency channels. In our system, we consider the statistical 
distribution of the ITD-IID estimates. Given a configuration hypothesis, we first formulate the 
probability of each channel supporting the hypothesis and then employ an integration method to 
produce the likelihood of observing the configuration. For configurations with more than one 
active source a gating mechanism is used to associate the observations with one of the sources.  

The last stage of the algorithm is to form azimuth tracks in a continuous HMM framework. 
We propose an HMM model that allows jumping between subspaces within each of which only a 
subset of the total number of sources is active. The framework combines the likelihood model 
from the previous stage, a model for the dynamics of source motion and jump probabilities 
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between the individual subspaces. Finally, optimal azimuth tracks are obtained using the Viterbi 
decoding algorithm. 

 

III. MODELING AUDITORY MOTION 
 

For human audition, sound source localization is primarily achieved with the binaural cues of 
ITD and IID. For a moving sound, there are changes in ITD and IID that may provide velocity 
information and enable the listener to perceive and track the changing source location [25]. The 
transmission path between the acoustic source and the receiver contains many subsystems, i.e. 
the loudspeaker, the ear canal and the eardrum (microphone). Here, we use the diffuse-field 
equalized HRTFs for which all the factors that are not location-dependent are eliminated. The 
HRTF catalog [24] provides 256 point impulse responses for a fixed number of locations 
residing on a 1.4 m radius sphere around the KEMAR head. In particular, the resolution in the 
horizontal plane is 5ο azimuth. The sampling rate is fixed at 44.1 kHz. 

An attractive property of HRTFs is that they are almost minimum-phase [26]. Therefore, a 
standard way of modeling HRTFs is to decompose the system into a cascade of a minimum-
phase filter and a pure delay line [27]. The motivation is that minimum-phase systems behave 
better than the raw measurements for interpolation both in the phase and the magnitude response. 
In addition, a minimum-phase reconstruction of HRTF does not have perceptual alterations [28]. 
Here, we reconstruct the minimum-phase part through appropriate windowing in the cepstral 
domain. Specifically, the negative cepstral coefficients are set to 0 and a minimum-phase filter is 
then obtained by inverting the truncated cepstrum [29]. The time delay part is estimated as the 
mean of the group delay in the range of interest from 80 Hz to 5 kHz.  

To simulate a continuous motion, the impulse response of an arbitrary direction of sound 
incidence is obtained by interpolating separately the minimum-phase filters and the time delays 
corresponding to neighboring entries in the HRTF catalog. Since we simulate motions in the 
horizontal plane, a simple two-way linear interpolation is applied. The impulse response is then 
reconstructed from the cascade of the resulting minimum-phase filter and the time delay. Finally, 
to synthesize the binaural response of the KEMAR dummy head to one moving source a 
monaural signal is upsampled to 44.1 kHz and filtered with the corresponding time-varying left 
and right impulse responses. The synthesized multiple sources are added at the two ears and fed 
to the tracking system. 

 

IV. AUDITORY PERIPHERY AND BINAURAL PROCESSING 
 
It is widely acknowledged that cochlear filtering can be modeled by a bandpass filterbank [30]. 
The filterbank employed here consists of 128 fourth-order gammatone filters [31] with channel 
center frequencies equally distributed on the equivalent rectangular bandwidth (ERB) scale 
between 80 Hz and 5 kHz. In addition, we adjust the gains of the gammatone filters in order to 
simulate the middle ear transfer function [32]. In the final step of the peripheral model, we use a 
simple model of hair cell transduction that consists of half-wave rectification and a square root 
operation. 

To extract ITD information, we employ the normalized cross-correlation computed at lags 
equally distributed from –1 ms to 1 ms )4444( <<− τ  using a rectangular integration window of 
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20 ms (corresponding to K=880 samples below). This range of time lags encloses the plausible 
range for the human head. The cross-correlation is computed for all frequency channels and 
updated every 10 ms, according to the following formula for frequency channel c, time frame m, 
and lag τ : 
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where ,  refer to the left and right peripheral output for channel c, and cl cr cl , cr  their mean 
values over the integration window, respectively. Each lag τ  corresponding to a peak in the 
cross-correlation function is considered an ITD estimate. In addition, IID information is 
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V. STATISTICAL TRACKING 
 
The problem of tracking the azimuths of multiple acoustic sources is formulated here in an 
HMM framework. An HMM is a doubly stochastic process where an underlying stochastic 
(Markovian) process that is not directly observable (i.e. “hidden”) is observed through another 
stochastic process that produces a sequence of observations [33]. An HMM is completely 
defined by the following: 1) the possible target state space; 2) the transition probabilities that 
reflect the evolution of the target states across time; and 3) the observation probabilities 
conditioned on the target states, also known as the observation likelihood. Fig. 2 illustrates our 
proposed HMM framework. A state in the target space specifies what the active sources are as 
well as their azimuth information at a particular time frame. The target space is decomposed into 
subspaces; each subspace corresponds to a subset of active sources. Hence, the transition 
probability between states in neighboring time frames must take into account both the jump 
probability between subspaces and the temporal evolution within individual subspaces. Finally, a 
statistical model that integrates ITD and IID observations in different frequency channels is used 
to construct the observation likelihood in the target space. To increase the robustness of the 
system only frequency channels that are dominated by a single source and thus deemed reliable 
are considered in our statistical integration.  

 7



OSU Dept. of Computer Science and Engineering Technical Report #44, 2006 

Target State 
Space 

O
bs

er
va

tio
n 

Li
ke

lih
oo

d 

Source Dynamics 

ITD and IID observations

One Frame 
 

Fig. 2. Schematic diagram of an HMM for modeling continuous source tracks. 

 

A. Dynamics Model 
 

In a practical multi-source tracking situation, the number of active sources at a particular time is 
generally unknown. In this study, we assume a maximum of three sources and aim to assign 
separate tracks to each of the sources; the framework can be extended for more sources. Hence, 
we define the target state space as the union of eight possible subspaces as follows: 

1 2 3 1,2 1,3 2,3
0 1 1 1 2 2 2S S S S S S S S S= U U U U U U U 3 ,                       (3) 

where  is the silence space with no active source,  is the state space for a single active 
source i,  is the state space for two simultaneously active sources i and j, and  is the state 
space for all three active sources. A state is represented as a 3-D vector 

0S 1
iS

,
2
i jS 3S

1 2 3( , , )ϕ ϕ ϕ=x , where 
each dimension iϕ  gives the azimuth for the ith source or indicates that the source is silent.  

State transitions in a Markov model provide a standard statistical framework for dealing with 
multiple dynamic models (e.g. [4]). Suppose that the state of the system at frame m, 

1 2 3( , ,m m m m )ϕ ϕ ϕ=x , is in the subspace sm and the sources are independent of each other. Then the 
state transitions are described by: 

( ) ( )1 1 1 1, | , ( | ) |i i
m m m m m m m m

i I

p s s p s s p ϕ ϕ− − − −
∈

= ∏x x ,                        (4) 

where p(sm | sm-1) is the jump probability between subspaces, I is the set of active sources at time 
frame m, and  gives the temporal evolution of the ith source. ( 1|i i

m mp ϕ ϕ − )
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TABLE I 

JUMP PROBABILITIES BETWEEN SUBSPACES WITH ZERO, ONE, TWO AND THREE 
ACTIVE SOURCES 

 0S→  1
1S→  2

1S→  3
1S→  1,2

2S→  1,3
2S→  2,3

2S→  3S→  

0S  0.9663 0.0112 0.0112 0.0112 0 0 0 0 
1
1S  0.0692 0.6590 0 0 0.1359 0.1359 0 0 
2

1S  0.0692 0 0.6590 0 0.1359 0 0.1359 0 
3
1S  0.0692 0 0 0.6590 0 0.1359 0.1359 0 
1,2
2S  0 0.0347 0.0347 0 0.7077 0 0 0.2230 
1,3
2S  0 0.0347 0 0.0347 0 0.7077 0 0.2230 
2,3
2S  0 0 0.0347 0.0347 0 0 0.7077 0.2230 

3S  0 0 0 0 0.0448 0.0448 0.0448 0.8655 
 
The jump probabilities between state spaces of zero-, one-, two- and three-sources in 

consecutive time frames are estimated using mixtures of three speech utterances from the TIMIT 
database [34]. For this, speech activity detection is performed separately on each individual 
utterance by using a threshold on the signal energy. This enables the detection of the number of 
active sources at each time frame in the mixture. We assume that at most one source can be 
turned on or off during one time frame. Also, the three one-source as well as the three two-
source subspaces are considered equally probable. The resulting jump probabilities between the 
eight subspaces are reported in Table I.  

We assume that an active source moves slowly and follows a linear trajectory with additive 
Gaussian noise. Also, when a source transitions from silence to activity we assume a uniform 
distribution in the azimuth space. Therefore the dynamics of the ith source is described by: 

( ) 1 1
1

1

( , ),
|

( ),

  

         

i i
m mi i

m m i i
m m

N n
p

U n

ϕ σ ϕ
ϕ ϕ

ϕ ϕ
− −

−

−

⎧ ≠⎪= ⎨
=⎪⎩

il

il
,                                               (5) 

where nil stands for silence, ( , )N ϕ σ  denotes the Gaussian distribution with mean ϕ  and 
standard deviation σ  which is set to a small value. U denotes the uniform distribution in the 
azimuth range [-90○, 90○]. 
 

B. Statistics of ITD and IID 

 

For a particular T-F unit, the normalized cross-correlation function of (1) has a maximum of 1 
when the left and right signals are identical except for a time delay and an intensity difference. 
This condition is satisfied when only one source is active in the corresponding T-F unit. The 
computed ITD and IID reflect in this case the actual source location. However, when sources 
from different locations are all strong in a T-F unit, the left and right mixtures do not satisfy this 
condition anymore and the maximum in the normalized cross-correlation function decreases.  
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Fig. 3. ITD reference functions for three auditory channels with center frequencies of 500 Hz, 1 
kHz, and 3 kHz and azimuth in the range [-90○, 90○].  
 
Moreover, ITD and IID deviate from the actual source locations and can indicate phantom 
sources [18]. Hence, we utilize the peak height of the cross-correlation function as a measure of 
reliability in individual T-F units: A T-F unit is considered reliable (i.e., dominated by only one 
source) and thus selected if its peak height exceeds a threshold ( )cθ . The thresholds ( )cθ  are 
estimated so that 80% of all noisy T-F units are rejected. A unit is considered noisy if the relative 
strength R between target signal and interference is less than 0.2 where R is defined as the ratio 
between target energy and the sum of target and interference energy. We observe that ( )cθ  is a 
linearly decreasing function with respect to channel index c. 

For each selected T-F unit, the estimated ITD and IID signal a specific source location.  By  
studying  the  deviation  of  the  estimated  ITD  and  IID  values  from  the reference values, we 
can derive the probability of one selected channel supporting a location hypothesis. For each 
frequency channel, the reference values are obtained from simulated  white  noise  signals  at  
locations  in  the  azimuth  range [-90○, 90○]. Fig. 3 shows ITD values for three auditory channels 
with center frequncies of 500 Hz, 1 kHz and 3 kHz where the ITD corresponds to the lag of the 
maximum peak in the cross-correlation function. As seen in the figure, ITD is monotonic with 
respect to azimuth but has a slight dependency on channel center frequency due to diffraction 
effects [35]. IID reference values for all frequency channels are also shown in Fig. 4. Note that 
IID is highly dependent on both channel frequency and azimuth. 

Consider channel c and azimuth ϕ  for which the ITD and IID reference values are ( , )ref cτ ϕ  
and ( , )ref cι ϕ . For a given T-F unit, we define the ITD and IID deviations as: 

( , )ref cτδ τ τ ϕ= − ,                          (6a) 

( , )crefιδ ι ι ϕ= − ,                          (6b) 

where τ is the lag of the closest peak in the cross-correlation function to ( , )ref cτ ϕ  and ι is the 
estimated IID. 
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Fig. 4. IID reference functions for frequency in the range 80 Hz – 5000 Hz and azimuth in the 
range [-90○, 90○]. 

 

Statistics of the deviations τδ  and ιδ  are collected separately for each frequency channel 
across different time frames. Fig. 5 shows the results of these deviations for a channel with 
center frequency fc of 1.5 kHz. The ITD and IID deviations are obtained for the one-source 
scenario using a small set of 10 utterances from the TIMIT database and various linear motion 
patterns. As seen in the figure, both histograms are centered at zero and decrease sharply on both 
sides of zero. Consequently, we model the joint distribution of ITD and IID deviations in channel 
c as a combination of a Laplacian distribution, and a uniform distribution which models the 
background noise: 

( , ) (1 ) ( , ( )) ( , ( )) ( , )cp q L c L c qUcτ ι τ τ ι ι τ ιδ δ δ λ δ λ= − + ∆ ∆ ,                        (7) 

where  is the noise level. 0 q< < 1 ( , )cU τ ι∆ ∆  is the 2-D uniform distribution in the plausible 

range for τδ ∈[ ,  τ τ−∆ ∆ ] in lag step and ιδ ∈[ ,ι ι−∆ ∆ ] in dB. 20ι∆ =  and max( , 44)
2

s

c

f
fτ∆ = , 

where fs is the sampling frequency and 44 lag steps correspond to a delay of 1 ms. ( , )L δ λ  is the 
Laplacian distribution with parameter λ defined by: 

1( , ) exp
2

L
δ

δ λ
λ λ

⎛ ⎞
= −⎜

⎝ ⎠
⎟ .                                                                                                        (8) 
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Fig. 5. Histogram of estimated ITD and IID deviations from reference values for a channel with 
cf  = 1.5 kHz in the one-source scenario. 

 

We observe that the parameters ( )cτλ , ( )cιλ  are channel dependent: ( )cτλ  decreases 
abruptly with increasing c (or fc ) whereas ( )cιλ  increases slowly. To obtain smooth parameters 
across channels we use the following simple approximation: 

1 2( ) / cc a a fτλ = + ,                                         (9a) 

3 4( )c a aι cλ = + ⋅ .                                                                                (9b) 

Similarly, ITD and IID statistics are extracted for multi-source scenarios with two and three 
active sources. We employ a set of 10 binaural mixtures using the same utterances as in the one-
source situation and various linear motion patterns. For a selected T-F unit, the dominant source 
is obtained by comparing the energies of the individual sources and the ITD and IID deviations 
are computed relative to the dominant source. While the deviations exhibit the same peaky 
distributions as in the one-source scenario, their variance increases due to the mutual interference 
between the sources.  

The maximum likelihood (ML) method is then used to estimate the parameters a1, a2, a3, and 
a4 for the one-source and the multi-source scenarios assuming a fixed noise level q across all 
conditions and frequency channels. This ensures that the background noise and the unreliable 
channels do not influence the comparison between one-source and multi-source scenarios.  ML 
estimation gives q=0.03. The parameters a1, a2, a3, and a4 are reported in Table II. 

 
 
 
 
 

 12



OSU Dept. of Computer Science and Engineering Technical Report #44, 2006 

TABLE II 
ESTIMATED MODEL PARAMETERS FOR ONE-SOURCE AND MULTI-SOURCE 

CONDITIONS 

 
 a1 a2 a3 a4

One-source 0.1328 59.0497 0.3666 0.0026 

Multi-source 0.1293 500.000 1.2306 0.0071 

 

C. Likelihood Model  
 
In this subsection we derive the conditional probability density { }( , | )c cp T ι x , often referred to as 
the likelihood, which statistically describes what a single frame of ITD and IID observations 
relate to the joint state x of the source locations to be tracked. Here, cT   is the set of time lags τc 
corresponding to the local peaks in the cross-correlation function and ιc is the estimated IID for 
channel c. The braces denote all frequency channels. 

First, we consider the conditional probability { }( , | )c cp T ι x  for the one-source subspaces, i.e. 

. For channel c, we compute the deviations 1 2
1 1S S S∈ U Ux 3

1 τδ , ιδ  as described in Eq. 6 using as 
reference values ( , )ref cτ ϕ  and ( , )ref cι ϕ  where ϕ  refers to the azimuth of the hypothesized 
active source. Then, the conditional probability of the observations in channel c with respect to 
the one-source state x is given by: 

( , ),
( , | )

( , ),
            

   
c

c c
c

p if channel c is selected
p T

qU else
τ ι

τ ι

δ δ
ι

⎧
= ⎨ ∆ ∆⎩

x ,                       (10) 

where the symbols are as described in Eq. 7 and Eq. 9 and the parameters are estimated for the 
one-source scenario. Note that the uniform background noise is assigned to an unreliable 
channel. 

By assuming independence between observations in different channels, the conditional 
probability in a frame can be easily obtained by multiplying the conditional probabilities in 
individual channels. However, the observations are usually correlated due to the wideband nature 
of speech signals and the overlapping passbands of neighboring gammatone filters. This 
correlation results in ‘spiky’ distributions. This is known as the probability overshoot 
phenomenon. To alleviate this problem, the observation probability in the current time frame 
conditioned on the one-source state x is smoothed using a root operation [36]: 

({ , } | ) ( , | )bN
c c c c

c

p T p Tι κ ι= ∏x x ,                                  (11) 

where Nb=20 is the root number and κ is a normalization factor. 
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Next, we consider the conditional probability { }( , |c cp T ι x)  for the two-source case, i.e. 

. Similar to the one-source case, we compute the deviations 1,2 1,3 2,3
2 2 2S S S∈ U Ux k

τδ  and k
ιδ  with 

respect to the kth hypothesized source, where 1, 2k = . The conditional probability is identical 
for the three subspaces ( ,  and ) and the kth source denotes one of the two active 
sources in a given subspace. Observe that a selected channel should signal only one source under 
the assumption that only one speaker dominates a reliable T-F unit. Moreover, all channels 
whose ITD and IID deviations with respect to the same source are relatively small should 
support the same source hypothesis. Consequently, we employ a gating technique to associate 
channels with the hypothesized sources. Specifically, we label channel c as belonging to the kth 
source if the corresponding deviations satisfy 

1 2
2

,S 1 3
2

,S 2 3
2

,S

( )k cτ τδ ε λ<  and ( )k cι ιδ ε λ<  where 5ε =  is the 
gate size. Assume that the kth source is the stronger among the two (most selected channels are 
dominated by the kth source). Then the conditional probability for channel c under this 
assumption is given by: 

1 1 2 2

( , ),

( , | ) ( , ),

max[ ( , ), ( , )], 

      

         

   

c
k k

c c c

c c

qU if channel c not selected

p T k p if channel c belongs to source k

p p else

τ ι

τ ι

τ ι τ ι

ι δ δ

δ δ δ δ

⎧ ∆ ∆
⎪⎪= ⎨
⎪
⎪⎩

x, ,                                       (12) 

where all the parameters are derived for the multi-source case. 
We apply integration of the individual probabilities across all channels as done in Eq. 11 to 

give the conditional probability { }( , |c c )p T ι x,k  for the current time frame under the assumption 
that the kth hypothesized source is the strongest. Finally, the conditional probability 

{ }( , |c cp T ι x)  for the current time frame is the larger of assuming either the first or the second 
hypothesized source to be the stronger source: 

2({ , } | ) max[ ({ , } | 1), ({ , } | 2)] c c c c c cp T p T p Tι α ι ι=x x, x, ,                            (13) 

where 2α  is used to adjust the relative strength of the two-source subspace.  
Note that, without the gating mechanism, Eqs. 12 and 13 simplify to a simple max operation 

in the selected channels. However, this operation tends to overfit the data with a two-source 
model by assigning the noisy observations produced by one source to two closely spaced 
sources. The gating mechanism is one way to penalize the overfitting due to noise. 

Similar to the two-source case, we consider the conditional probability { }( , |c cp T ι x)  for the 
three-source case, i.e. .  Eqs. 12 and 13 are easily extensible to three sources by 
considering all the three-source permutations and utilizing an additional parameter 

3S∈x

3α  to adjust 
the relative strength of the S3 subspace. 

After training we fix nα  as follows: 2 1α =  and . Finally, we fix the probability of 
the current time frame conditioned on the silence state, i.e. 

4.25
3 eα −=

0S∈x :  
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0({ , } | )c cp T ι κα=x ,                             (14) 

where . The above 60eα −=0 α  parameters provide different weights for the individual 
subspaces. In addition to the actual active sources, a few unreliable channels may align and thus 
indicate the presence of a spurious source. The differential weights exceed the probability 
produced by these channels and as a result the system avoids this spurious source occurrence.  

D. HMM-Based Source Tracking 
 
For the continuous HMM framework described above, the state space and the time axis are 
discretized and the standard Viterbi algorithm is employed in order to identify the optimal 
sequence of states [37]. The algorithm attempts to reconstruct the initial tracks of the most 
probable sound sources in the scene. Consequently, the decision of the system at every time 
frame includes the number of currently active sources and their estimated locations.  

The computational cost of our HMM framework is mainly due to the large target space 
which increases with the maximum number of sources considered. This cost can be reduced 
significantly by employing several efficient implementation techniques. First, the computations 
are performed in the log domain thus reducing the number of multiplication and root operations. 
Second, pruning is used to reduce the number of states to be searched for deciding the current 
candidate states. Since the original tracks move slowly, the difference of azimuths in consecutive 
time frames, hence search, can be restricted considerably. Specifically, we allow an azimuth 
range of [-3σ, 3σ] where σ = 2○ is the standard deviation in the motion model of individual 
sources. Finally, beam search is employed to reduce the state space considered in the evaluation 
of the current time frame [38]. In each time frame, beam searching is performed so that any state 
whose maximum log probability falls more than 20 below the maximum of all states is not 
considered. 
 

VI. RESULTS AND COMPARISON 
 

The HMM tracking system presented in Section V has been evaluated for two-source and three-
source scenarios. As described in Section III, binaural synthesis is used to generate moving 
sources in the auditory space of a KEMAR dummy head. Given a binaural mixture as input, the 
system aims at identifying the number of active speakers at a particular time and constructing 
continuous trajectories for each of the sources. 

Fig. 6 shows the result of tracking two simultaneous speakers: one male and one female for a 
duration of 2.5 s. In this and subsequent evaluations, the original speech utterances are equalized 
to have the same energy level before binaural synthesis. As seen in the figure, the speakers 
follow a linear motion with respect to the azimuth on the frontal semicircle. The first speaker 
moves from 40○, which is on the right side of the KEMAR, to -40○ on the left side while the 
second speaker starts at -40○ and ends at 40○. Hence, the two trajectories intersect each other in 
the middle. The system is able to indicate when a source is active and track the two sources 
across time as long as it is not entirely masked by the interference. Two types of gaps are 
detected  by  the  system:  when  the  source  is  silent  and  when  the source is masked across all  
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Fig. 6. Source tracking for two crossing sources with linear motion. The solid lines show the true 
trajectories where a gap indicates a pause in the sentence. The ‘*’ and ‘o’ tracks correspond to 
the estimated tracks. 
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Fig. 7. Source tracking for two crossing sources with nonlinear motion. The solid lines show the 
true trajectories where a gap indicates a pause in the sentence. The ‘*’ and ‘o’ tracks correspond 
to the estimated tracks. 

 

frequency channels by the other source. While in Fig. 6 the system is able to sequentially link the 
two sources across the intersection point, in general our system provides no explicit mechanism 
for disambiguating intersecting source tracks. 

Although linear motions have been used during training, our system works for nonlinear 
motions. Fig. 7 shows the result of tracking one female and one male speaker moving on two 
cosine azimuth trajectories that also cross each other in the middle. Note that while the two 
source locations are correctly identified across time, the system switches the trajectories after the  
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Fig. 8. Source tracking for two sources with closely spaced motions. The solid lines show the 
true trajectories where a gap indicates a pause in the sentence. The ‘*’ and ‘o’ tracks correspond 
to the estimated tracks. 

 

intersection point. However, as seen in Fig. 6 our system could disambiguate between two tracks 
at a crossing point when the likelihood is dominated by a single continuous source in the 
neighborhood of the point. In Fig. 6, the source corresponding to the ‘○’ track is dominated by 
the source corresponding to the ‘*’ track around the crossing point, which facilitates the tracking 
of the latter one and helps the disambiguation of the two tracks. 

Fig. 8 highlights the robustness of the system to close trajectories. Two male speakers are 
moving on nonlinear trajectories with respect to azimuth. The two trajectories are symmetric 
with respect to the median plane.  The first speaker oscillates on the right side of the KEMAR 
while the second trajectory oscillates on the left side. Note that the distance between the two 
trajectories can be as small as 10○ when both speakers approach the median plane. As seen in the 
figure, the system makes associations and reconstructs the two trajectories. In some cases, a 
strong source may mask the presence of other sources, which results in the gaps in the estimated 
tracks.  

Fig. 9 shows results for a challenging scenario with three speakers following nonlinear 
motions. Two male and one female utterances are used to obtain the three binaural signals. The 
left ear  signal  for  each  speaker  is  displayed in Fig. 9(a),  Fig. 9(b)  and  Fig. 9(c), 
respectively. As seen in the figure, the system is able to detect the pauses between words in the 
utterances. Such word level accuracy is required in real speech applications where the talkers 
may utter only a few words for the duration of a particular recording. Since we assume that at 
most one source can be turned on or off during one time frame, there are no transitions allowed 
between the 1-source subspace and the three-source subspace. In Fig.9, the number of active 
sources in the time interval [0.45 s, 0.5 s] changes between three sources to one source and then 
to three sources again. This causes the switching of the tracks corresponding to the first and the 
third speakers as seen in Fig. 9(d). 
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Fig. 9. Tracking three nonstationary moving sources. (a) Left ear signal for the first speaker. (b) 
Left ear signal for the second speaker. (c) Left ear signal for the third speaker. (d) Continuous 
tracks obtained by the proposed model. The solid lines show the true trajectories where a gap 
indicates a pause in the sentence. The ‘*’, ‘o’ and ‘□’ tracks correspond to the estimated tracks. 

 

Finally, we compare our approach with a combination of Kalman filtering and data 
association techniques proposed by Sturim et al. [15] for the tracking of multiple speakers using 
measurements from an array of 16 microphones. Fig. 10 shows the extracted tracks using this 
Kalman filtering approach for  the  same  three  source  configuration  as  used  in  Fig. 9. For 
azimuth estimation, we employ the skeleton cross-correlogram described in [18] which is similar 
to the generalized cross-correlation method. First, the time-delay axis for the normalized cross-
correlations is mapped  to the azimuth axis using  the reference ITD  values.  Next,  each peak  in   
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Fig. 10. Tracking three non-stationary sources using a Kalman filter approach. (a) Summarized 
cross-correlation across time. (b) Continuous tracks using the Kalman filter approach. The solid 
lines show the true trajectories where a gap indicates a pause in the sentence. The ‘o’ tracks 
correspond to the estimated source locations. 

 

the cross-correlation function is replaced with a narrow-width Gaussian and all the individual 
channels are summed together. The results for the summary cross-correlation across time are 
shown in Fig. 10(a). Here the brighter regions correspond to stronger activities. For an anechoic 
situation, strong peaks are usually well correlated with the active sources. Hence, at each time  
frame  we  select  all the azimuths corresponding to the  prominent  peaks in  the  summary  
cross-correlation function.  As seen in Fig. 10(a), this representation exhibits spurious as well as 
missing peaks for a considerable number of frames. Smoothing these observations using Kalman 
filtering improves the location estimation. In Sturim et al., the Kalman filter is used for the 
tracking of single source tracks [15]. Specifically, we use a second-order auto-regressive model 
for the source motion. In addition, a data association algorithm is used to initialize and terminate 
tracks. The new observations are associated with individual tracks using acceptance regions that 
take  into  account  the  variance  of  measurement  noise  and   the  possible  target  motion  [15].  
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Fig. 11. Source tracking for three stationary sources. The solid lines show the true trajectories 
where a gap indicates a pause in the sentence. The ‘*’, ‘o’ and ‘□’ tracks correspond to the 
estimated tracks. 
 

Observations  that  cannot  be  associated  with  any  of  the  active  tracks  are used in the 
initialization of a new track. The estimated tracks obtained using this approach are presented in 
Fig. 10 (b). 

Note that in the Kalman filter approach presented above there is no correspondence between 
estimated tracks across time. This differs from our system which uses the continuity  of  the  
tracks  at  the  boundaries  between  the  one-,  two-  and  three-source subspaces to reconstruct 
the individual tracks across time. A comparison between Fig. 10(b) and Fig. 9(d) also shows that 
our HMM model performs substantially better in estimating the individual source locations. 

 

VII.  DISCUSSION 
 

We have proposed a new approach for tracking multiple moving sound sources.  Our approach 
includes an across-frequency statistical integration method for localization and an HMM 
framework that imposes continuity constraints across time for individual tracks along with a 
switching mechanism for transition between subspaces corresponding to different numbers of 
active sources. As a result, the system is able to automatically detect the number of active 
sources at a given time and estimate their locations. Such a property is highly desirable in speech 
applications where speakers spontaneously change locations and utter words in a sporadic way.  

Our system may also be applied to the multi-source localization of stationary sources. Fig. 11 
shows such an example with three stationary sources: one female speaker at -30○, one male 
speaker at 0○,

 and another female speaker at 30○. The signals for the three sources are equalized 
to have the same average energy at the two ears. To demonstrate the system capability to jump 
between the subspaces with zero, one, two and three sources, we let the three speech utterances 
start and end at different times. As shown in the figure, the system correctly detects the number 
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of sources for a majority of time frames. Moreover, the source locations are estimated to within 
5○ of true azimuths. This demonstrates the potential of our system in localizing stationary 
sources. A standard localization method for stationary sources summates the cross-correlations 
across both frequency and time [18]. Each prominent peak in the resulting summary cross-
correlation indicates an active source. However, such pooling often leads to spurious or missing 
peaks, which in turn result in significant tracking errors. Tracking of individual sources across 
time as well as detection of the number of sources at a given time provides a more detailed 
description which may be necessary for improved accuracy. 

While the current system does not consider reverberation, our framework holds promise for 
reverberant conditions. Under reverberation, ITD and IID cues become noisy due to the multiple 
reflections of a sound source. However, the acoustic onsets are generally unaffected by the 
reflections and thus could be utilized to trigger ITD and IID estimation during intervals where 
reverberant energy is weak. Therefore, an onset detector could be incorporated in our channel 
selection stage in order to improve the localization of reverberant sound sources.  

Although we have considered a maximum of three sources, our tracking framework is 
extensible to an arbitrary number of sources. With increased number of sources, the number of 
reliable channels decreases and hence the dynamics part of the model should play a more 
dominant role. However, the state space grows exponentially with the number of sources and 
thus efficient pruning strategies will become increasingly necessary. Also, the system needs to 
incorporate additional information in order to robustly identify possible direction changes at 
crossing points, such as spectral and pitch continuity. These issues as well as tests on sound 
motions in real environments require further research. 
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